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Introduction

The topological classification of structurally stable diffeomorphisms on closed manifolds
has made tremendous progress in the last 50 years. A whole series of papers by such authors
as S.H. Aranson, A. N. Bezdenezhnykh, V. Z. Greenes [2], [4], [6], [5], [15]; E. A. Borevich [9];
C. Bonatti, R. Langevin [8]; I.Yu. Vlasenko [40]; V.Z. Grines, S.H. Zinina, T.M. Mitryakova,
O.V. Pochinka [34], [16]. The classification of arbitrary Morse-Smale diffeomorphisms on
surfaces1 required the use of the apparatus of topological Markov chains and follows from
the work of C. Bonatti and R. Langevin [8] (see also [7]), where necessary and sufficient
conditions of topological conjugacy are found for structurally stable diffeomorphisms with
zero-dimensional basic sets.

According to the work by S. Newhouse and J. Palis [36], there is an open set of arcs
that start in a Morse-Smale diffeomorphism and have the first bifurcation point in a dif-
feomorphism with heteroclinic tangency. The review [3] describes bifurcations of systems
belonging to the boundary of the set of Morse-Smale systems, which can be divided into
two parts: 1) systems with a finite set of nonwandering trajectories containing either non-
hyperbolic fixed points or cycles, or trajectories of nontransversal intersection of stable and
unstable manifolds of fixed points or (and) cycles, or both at the same time; 2) systems
with an infinite set of nonwandering trajectories.

Obviously, the violation of the transversality condition for heteroclinic intersections of
invariant manifolds of saddle points of a diffeomorphism leads to its non-roughness. More-
over, this leads to the appearance of continuous topological invariants – moduli of topologi-
cal conjugacy and, hence, to the existence of a continuum of non-conjugate diffeomorphisms
with the same heteroclinic intersection geometry. The term “modulus of topological con-
jugacy” was proposed by L.P. Shilnikov, S.V. Gonchenko and D.V. Turaev [14], [13] and
corresponds to the term “moduli of stability” which is used in Western literature. Moduli
of stability arise, in particular, for systems lying on the boundary of the set of Morse-Smale
systems, having a finite set of nonwandering trajectories and containing trajectories of non-
transversal intersection of stable and unstable manifolds of fixed points and/or cycles (see
[3]).

A rigorous definition of moduli was given in the works by L.P. Shilnikov, S.V. Gonchenko
and D.V. Turaev [14], [13]. Namely, let 𝑋 be a topological space, 𝑥 ∈ 𝑋, and let 𝑅 be an
equivalence relation on some neighborhood 𝑈𝑥 ⊂ 𝑋 of 𝑥. Suppose that a continuous locally
non-constant function ℎ : 𝑈𝑥 → R is defined on 𝑈𝑥, that is, in any neighborhood 𝑈𝑦 ⊂ 𝑈𝑥 of
any point 𝑦 ∈ 𝑈𝑥 there exists a point 𝑧 such that ℎ(𝑧) ̸= ℎ(𝑦). We will call a function ℎ by
an 𝑅-equivalence modulus if the inequality ℎ(𝑦) ̸= ℎ(𝑧) for 𝑦, 𝑧 ∈ 𝑈𝑥 implies that 𝑦 and 𝑧

are not 𝑅-equivalent. In this case, 𝑥 ∈ 𝑋 is said to have modulus ℎ. We say that 𝑥 has (at
least) 𝑚 moduli if 𝑚 independent moduli are defined on 𝑋, where the independence of the
system of moduli ℎ1, . . . , ℎ𝑚 is understood in the following sense: for any 𝑖 ∈ {1, . . . ,𝑚} in

1In this work a surface is always 2-dimensional.
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any neighborhood 𝑉𝑥 ⊂ 𝑈𝑥 of 𝑥 there exists a point 𝑦 such that ℎ𝑙(𝑥) = ℎ𝑙(𝑦) for all 𝑙 ̸= 𝑖

and ℎ𝑖(𝑥) ̸= ℎ𝑖(𝑦). We say that 𝑥 has infinitely many moduli if 𝑥 has 𝑚 moduli for any
given 𝑚. Otherwise, 𝑥 has a finite number of moduli.

If in this definition we replace R with a space of some functions, and replace the equality
of the values of the map ℎ with some equivalence relation of the values of the map ℎ, then
ℎ will be called a functional 𝑅-equivalence modulus.

J. Palis was the first to pay attention to the existence of topological conjugacy moduli
[38]. He discovered the existence of topological conjugacy moduli for systems with simple
dynamics. Two-dimensional diffeomorphisms and flows with a non-rough heteroclinic tra-
jectory, at the points of which the invariant manifolds of two different saddle fixed points
have one-sided tangency, already have such moduli. Namely, if 𝑓 is such a diffeomorphism
(of class 𝐶𝑟, 𝑟 ≥ 2) that has two hyperbolic saddle fixed points 𝜎1 and 𝜎2 with eigenvalues
𝜚𝑖, 𝜇𝑖 such that |𝜚𝑖| < 1 < |𝜇𝑖|, 𝑖 = 1, 2; moreover, 𝑊 𝑠

𝜎1
has a one-way tangency with 𝑊 𝑢

𝜎2

at points of some heteroclinic trajectory (see Fig. 1), then the parameter

𝛼 =
ln |𝜚2|
ln |𝜇1|

is a modulus of topological conjugacy in the sense that diffeomorphisms 𝑓 and 𝑓 ′ with
heteroclinic tangency can be conjugate only if

ln |𝜚2|
ln |𝜇1|

=
ln |𝜚′2|
ln |𝜇′

1|
.

Figure 1: Tangency of saddle invariant manifolds

It follows from the above, in particular, that any diffeomorphism of a surface that
admits a heteroclinic tangency has at least one topological conjugacy modulus. A significant
advance in the description of the moduli of surface diffeomorphisms was the work of W.
di Melu, S. van Strien [11], in which necessary and sufficient conditions were found for an
Ω-stable diffeomorphism 𝑓 of an orientable surface to have a finite number of moduli of
topological conjugacy. Note that one of the conditions is that the length of the chain of
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tangent separatrices is bounded.
This study is devoted to describing the moduli of topological conjugacy of Ω-stable flows

on surfaces, distinguishing among them a class of flows with a finite number of moduli, and
classifying them up to topological conjugacy.

The traditional approach to the qualitative study of the dynamics of flows with a finite
number of fixed points and periodic orbits on surfaces consists in identifying regions on
the carrier manifold with the same asymptotic behavior of trajectories which are called
cells. The classical combinatorial invariants of such flows based on cell selection are the
Leontovich-Mayer scheme [32], [31] for flows in a bounded part of the plane, the directed
Peixoto graph [39] and the Oshemkov-Sharko molecule [37] for Morse-Smale flows on arbi-
trary closed surfaces, the Neumann-O’Brien orbital complex [35] for the class of flows on
arbitrary closed surfaces containing Ω-stable flows.

Recall that a Morse-Smale flow is called gradient-like if its nonwandering set does not
contain periodic trajectories. Such flows have the simplest dynamics, which inspired many
mathematicians to look for invariants of their topological equivalence. Under assumptions
of different generality, the following invariants were obtained for the considered class of
gradient-like flows: Peixoto graph (M. Peixoto) [39], modified Peixoto graph (V.Z. Grines,
O.V. Pochinka) [17] , bicolor graph (X. Wang) [41], three-colour graph (A.A. Oshemkov,
V.V. Sharko) [37], circular scheme (G. Fleitas) [12].

Thus, the problem of classifying gradient-like flows on surfaces from the point of view
of topological equivalence has been solved in an exhaustive way. In this work, we prove
that for gradient-like flows the topological equivalence classes coincide with the topological
conjugacy classes. The obtained result allows us to use any invariants of their equivalence
to check the topological conjugacy of gradient-like flows. In addition, for each of the above
invariants, an efficient algorithm (its running time depends polynomially on the input data)
is constructed to distinguish the topological equivalence of gradient-like flows.

Obviously, each limit cycle generates a topological conjugacy modulus equal to the
period of the cycle. Therefore, for the topological conjugacy of Morse-Smale flows, the
available topological equivalence invariants are clearly not sufficient. In addition, in this
paper, the surprising fact of the presence of an infinite number of topological conjugacy
classes in one class of topological equivalence of the Morse-Smale flow is established. This
effect is related to the uniqueness of the invariant foliation in a neighborhood of any periodic
orbit. It is proved that the criterion for the finiteness of the number of moduli of topological
conjugacy of a Morse-Smale flow on a surface is the absence of trajectories going from
one limit cycle to another one. For the class of Morse-Smale flows on surfaces with a
finite number of moduli, their topological classification is also obtained up to topological
conjugacy, based on the Oshemkov-Sharko molecule.

Another source of moduli for Ω-stable systems on surfaces is the existence of tangent
saddle invariant manifolds, i.e. connections (see Fig. 2), which was discovered by J. Palis
in [38]. As follows from the above results of S. van Strien and W. de Melu, one of the
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conditions for the finiteness of the number of moduli for a diffeomorphism is the limitation
of the length of the chain of saddles with tangent saddle manifolds, it should not exceed
three. In this work, we prove that in the case of a flow there is no such restriction on the
length of the saddle chains of the flow. A complete invariant of topological equivalence
of Ω-stable flows, an equipped graph, is also introduced; for such graphs, a polynomial
algorithm for distinguishing their isomorphism is constructed.

Figure 2: A connection

1 The results

Let 𝑀 be a smooth closed 𝑛-manifold with a metric 𝑑. A smooth flow on 𝑀 is a smooth
map 𝜑 : 𝑀 × R → 𝑀 with group properties:
1) 𝜑(𝑥, 0) = 𝑥 ∀𝑥 ∈ 𝑀 ;
2) 𝜑(𝜑(𝑥, 𝑡), 𝑠) = 𝜑(𝑥, 𝑡+ 𝑠) ∀𝑥 ∈ 𝑀 , ∀𝑠, 𝑡 ∈ R.

In what follows, we will use the notation 𝜑𝑡(𝑥) = 𝜑(𝑥, 𝑡), 𝑥 ∈ 𝑀 , 𝑡 ∈ R. Note that for
a fixed 𝑡 ∈ R the map 𝜑𝑡 : 𝑀 → 𝑀 is a diffeomorphism (see, for example, [19]), so the flow
is also called the one-parameter group of diffeomorphisms acting on the manifold 𝑀 .

The trajectory or orbit of a point 𝑥 ∈ 𝑀 is called the set 𝒪𝑥 = {𝜑𝑡(𝑥), 𝑡 ∈ R}. Any
flow trajectory either consists of a single point, in which case this point is called fixed, or is
homeomorphic to a circle, in which case any point of the trajectory is called periodic, or is
an injectively immersed line. It is assumed that all flow trajectories other than a fixed point
are oriented in accordance with the increase in the parameter 𝑡. Each flow 𝜑𝑡 : 𝑀 → 𝑀 is
associated with a vector field tangent to the trajectories of the flow

�̇� =
𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
|𝑡=0 = 𝐹 (𝑥).

Flows 𝑓 𝑡, 𝑓 ′𝑡 : 𝑀 → 𝑀 on a manifold 𝑀 are said to be topologically equivalent if there
exists a homeomorphism ℎ : 𝑀 → 𝑀 mapping the trajectories of the flow 𝑓 𝑡 to trajectories
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of the flow 𝑓 ′𝑡 with preservation of the direction of movement along the trajectories. Two
flows are said to be topologically conjugate if the condition ℎ𝑓 𝑡 = 𝑓 ′𝑡ℎ, 𝑡 ∈ R is satisfied,
which means that ℎ maps trajectories to trajectories, preserving not only the direction, but
also the time of movement along the trajectories.

Let 𝑝 ∈ 𝑀 be a fixed point of the flow 𝜑𝑡 : 𝑀 → 𝑀 . Stable and unstable, respectively,
the manifold of a fixed point 𝑝 are the sets

𝑊 𝑠
𝑝 = {𝑥 ∈ 𝑀 : 𝑑(𝑝, 𝜑𝑡(𝑥)) → 0 при 𝑡 → +∞} и

𝑊 𝑢
𝑝 = {𝑥 ∈ 𝑀 : 𝑑(𝑝, 𝜑𝑡(𝑥)) → 0 при 𝑡 → −∞}.

The stable (unstable) separatrix of a fixed point 𝑝 is a connected component of the set 𝑊 𝑠
𝑝 ∖𝑝

(𝑊 𝑢
𝑝 ∖ 𝑝).
In addition to the tangent vector field �̇� = 𝐹 (𝑥), the fixed point of the flow is associated

with a linearized vector field
�̇� = 𝐴(𝑥− 𝑝),

where 𝐴 is the matrix of partial derivatives of the map 𝐹 (𝑥) at the point 𝑝 (Jacobi matrix).
A fixed point 𝑝 of the flow 𝜑𝑡 is called hyperbolic if the eigenvalues of the matrix 𝐴 do not
have zero real parts.

Moreover, a fixed point 𝑝 of the diffeomorphism 𝑓 : 𝑀 → 𝑀 is called hyperbolic if
the partial derivative matrix of the mapping 𝑓(𝑥) at the point 𝑝 (Jacobi matrix) has no
eigenvalues in module equal to one.

Let c be a closed trajectory of the flow 𝜑𝑡 : 𝑀 → 𝑀 . Stable and unstable manifolds2

respectively of the closed trajectory c are the sets

𝑊 𝑠
c = {𝑥 ∈ 𝑀 : min

𝑝∈c
𝑑(𝑝, 𝜑𝑡(𝑥)) → 0 if 𝑡 → +∞} and

𝑊 𝑢
c = {𝑥 ∈ 𝑀 : min

𝑝∈c
𝑑(𝑝, 𝜑𝑡(𝑥)) → 0 if 𝑡 → −∞}.

Let 𝑝 ∈ c, and Σ𝑝 be an (𝑛 − 1)-dimensional disk transversal at 𝑝 to a vector tangent
to the periodic trajectory, called the Poincaré secant. Then in some neighborhood 𝑉𝑝 ⊂ Σ𝑝

of the point 𝑝 for each point 𝑥 ∈ 𝑉𝑝 there exists a value 𝜏𝑥 > 0 such that 𝜑𝜏𝑥(𝑥) ∈ Σ𝑝

and 𝜑𝑡(𝑥) /∈ Σ𝑝 for any 0 < 𝑡 < 𝜏𝑥. The map 𝑓 : 𝑉𝑝 → Σ𝑝 defined by the formula
𝑓(𝑥) = 𝜑𝜏𝑥(𝑥), 𝑥 ∈ 𝑉𝑝 is called the succession mapping or the Poincaré map.

The point 𝑝 is a fixed point of the sequence map. A periodic trajectory c is called
hyperbolic if the point 𝑝 is a hyperbolic fixed point of the Poincaré map 𝑓 : 𝑉𝑝 → Σ𝑝.

A point 𝑥 ∈ 𝑀 is called a wandering point of a flow 𝜑𝑡 : 𝑀 → 𝑀 if there exists an
open neighborhood 𝑈𝑥 of 𝑥 such that 𝜑𝑡(𝑈𝑥) ∩ 𝑈𝑥 = ∅ for all 𝑡 > 1. Otherwise the point
𝑥 is called non-wandering, the set of all non-wandering points of the flow 𝜑𝑡 is called its
non-wandering set and denoted by Ω𝜑𝑡 .

2See [42], The Stable Manifold Theorem.
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A flow 𝜑𝑡 : 𝑀 → 𝑀 is called Ω-stable if there exists a neighborhood 𝑈(𝜑𝑡) of the flow 𝜑𝑡

in the space 𝐶1(𝑀 ×R,𝑀) with 𝐶1-topology such that if 𝜑′𝑡 ∈ 𝑈(𝜑𝑡) then the flows 𝜑𝑡|Ω𝜑𝑡

and 𝜑′𝑡|Ω𝜑′𝑡
are topologically equivalent.

A flow 𝜑𝑡 : 𝑀 → 𝑀 is called structurally stable if there exists a neighborhood 𝑈(𝜑𝑡) of
the flow 𝜑𝑡 in the space 𝐶1(𝑀 ×R,𝑀) with 𝐶1-topology such that if 𝜑′𝑡 ∈ 𝑈(𝜑𝑡) then the
flows 𝜑𝑡 and 𝜑′𝑡 are topologically equivalent.

A flow is called a Morse-Smale flow if its nonwandering set consists of a finite number
of hyperbolic fixed points and a finite number of hyperbolic periodic orbits whose stable
and unstable manifolds intersect transversally. A Morse-Smale flow without periodic orbits
is called a gradient-like flow.

As a part of the study, the following results were obtained on the topological conjugacy
of Ω-stable flows on surfaces.

Chapter 2 considers gradient-like flows on surfaces and proves that for such flows
the classifications coincide up to topological equivalence and topological conjugacy. For
the main topological invariants of flows of this class, efficient algorithms for distinguishing
them are found.

Namely, consider a gradient-like flow 𝑓 𝑡 given on a closed surface 𝑆. The first result
of the chapter says that the topological invariants describing the topological equivalence
classes of gradient-like flows on surfaces are also suitable for classification up to topological
conjugacy.

Theorem 1 ([21]*, Theorem 7; [28]*, Theorem 2.1; [30]*, Theorem 1) If two
gradient-like flows on a closed surface are topologically equivalent, then they are topologi-
cally conjugate.

Thus, the classes of topologically equivalent and the classes of topologically conjugate
gradient-like flows on surfaces coincide. In most cases, the invariants describing these
classes are equipped graphs. Two equipped graphs are said to be isomorphic if there is a
one-to-one correspondence that maps vertices and edges of one graph to vertices and edges
of the other graph with preservation of equippings. An algorithm for distinguishing graph
isomorphism in some class of graphs is called efficient or polynomial if its implementation
time is limited by a polynomial of the length of the input information (the number of
vertices, edges, and graph framing parameters). This definition of algorithm efficiency goes
back to A. Cobham [10]. Since for arbitrary graphs the problem of the existence of an
efficient distinguishing algorithm (the NP-completeness problem) is open, the efficiency is
the standard of intractability of such a problem [18].

Consider the set
𝑆 = 𝑆∖

⋃︁
𝜎∈Ω1

𝑓𝑡

(𝑐𝑙(𝑊 𝑢
𝜎 ) ∪ 𝑐𝑙(𝑊 𝑠

𝜎)) .

The closure of any of its connected components is called a cell.
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Let Γ𝑓 𝑡 be a directed flow graph 𝑓 𝑡 such that the vertices of the graph Γ𝑓 𝑡 correspond
to fixed points of the flow 𝑓 𝑡, and the edges correspond to saddle separatrices. Let’s equip
the graph Γ𝑓 𝑡 with distinguishing sets i.e. subgraphs corresponding to the cell boundaries.
As a result, we get Peixoto graph Γ𝑃

𝑓 𝑡 . Such a graph is a complete topological invariant for
gradient-like flows on arbitrary surfaces (see Fig. 3). .
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Figure 3: Gradient-like flow 𝑓 𝑡 on the sphere 𝑆 and its Peixoto graph Γ𝑃
𝑓 𝑡

Theorem 2 ([21]*, Theorem 1; [28]*, Theorem 3.1) Let 𝑓 𝑡 and 𝑓 ′𝑡 be gradient-like
flows defined on a surface 𝑆 of genus 𝑔, and Γ𝑃

𝑓 𝑡, Γ𝑃
𝑓 ′𝑡 are their 𝑛-vertex Peixoto graphs.

Then the isomorphism of the graphs Γ𝑃
𝑓 𝑡 and Γ𝑃

𝑓 ′𝑡 can be checked in time 𝑂
(︀
𝑛𝑂(𝑔)

)︀
for 𝑔 > 0

and in time 𝑂(𝑛) for 𝑔 = 0.

In 2011 V. Z. Grines and O. V. Pochinka [17] modified Peixoto graph. Namely, instead
of distinguishing sets, they equipped the directed Peixoto graph Γ𝑓 𝑡 with orders of edges
(consistent with the embeddings of saddle separatrices in the supporting surface) incident
to the vertices corresponding to sinks. The isomorphism class of the thus obtained modified
Peixoto graph Γ𝐺𝑃

𝑓 𝑡 is also a complete equivalence invariant of gradient-like flows on arbitrary
surfaces.

Theorem 3 ([21]*, Theorem 2; [28]*, Theorem 3.2) Let 𝑓 𝑡, 𝑓 ′𝑡 be gradient-like flows
on a surface 𝑆 of genus 𝑔, and Γ𝐺𝑃

𝑓 𝑡 , Γ𝐺𝑃
𝑓 ′𝑡 are their modified 𝑛-vertex Peixoto graphs. Then

the graph isomorphism Γ𝐺𝑃
𝑓 𝑡 and Γ𝐺𝑃

𝑓 ′𝑡 can be checked in 𝑂
(︀
𝑛𝑂(𝑔)

)︀
if 𝑔 > 0, and in time 𝑂(𝑛)

if 𝑔 = 0.

The next invariant for which the distinguishing algorithm is constructed is the Wang
graph [41]. The Wang graph for the flow 𝑓 𝑡 on an orientable surface is the graph dual to
the Peixoto graph: the vertices of the Wang graph Γ𝑊

𝑓 𝑡 correspond to the cells of the flow
𝑓 𝑡, its edges correspond to the saddle separatrices and connect the vertices corresponding
to the cells bordering separatrices along the corresponding edges. The edge is coloured in
the colour 𝑢 if it corresponds to an unstable saddle separatrix, and in the colour 𝑠 if it
corresponds to a stable saddle separatrix. Moreover, if any saddle separatrix lies in the
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interior of the closure of some cell, then this cell and this separatrix correspond to a vertex
of a graph with a loop. That is, each vertex has a valence 4, if we count the loop as two
’edges’. The set of these four edges is divided into pairs, each of which includes one edge
corresponding to a stable separatrix and one edge corresponding to an unstable separatrix,
adjoining each other at the boundary of the corresponding cell vertex. Such pairs are
denoted by an arc that intersects both edges of the pair (see Fig. 4).

Figure 4: A flow 𝑓 𝑡 from 𝐺 onto a surface 𝑆 and its Wang graph Γ𝑊
𝑓 𝑡

Theorem 4 ([21]*, Theorem 3; [28]*, Theorem 3.3) Let 𝑓 𝑡, 𝑓 ′𝑡 be gradient-like flows
on an orientable surface 𝑆 of genus 𝑔, and Γ𝑊

𝑓 𝑡 , Γ𝑊
𝑓 ′𝑡 are their 𝑛-vertex Wang graphs. Then

the isomorphism of the graphs Γ𝑊
𝑓 𝑡 and Γ𝑊

𝑓 ′𝑡 is checked in time 𝑂
(︀
𝑛𝑂(𝑔)

)︀
if 𝑔 > 0 and in

time 𝑂(𝑛) if 𝑔 = 0.

A gradient-like flow 𝑓 𝑡 : 𝑆 → 𝑆 is called polar if its nonwandering set contains exactly
one source and exactly one sink. The Fleitas graph or Fleitas circular scheme Γ𝐹

𝑓 𝑡 for such
a flow 𝑓 𝑡 is constructed as follows. Let us choose around the source (the only one, due
to the polarity of the flows) a circle 𝑆 transversal to the trajectories of the flow 𝑓 𝑡 in the
source basin. Denote by 𝐷 the disk that this circle bounds in the source basin (i.e. 2-
dimensional invariant manifold). Assign labels to all points of intersection of the circle 𝑆

with saddle separatrices so that the points of intersection with separatrices of the same
saddle have the same labels. Each pair of points with the same labels is assigned with spin,
that is, the sign +(−), if the union of the disk 𝐷 with the tubular neighborhood of the
stable manifold of the saddle point that intersects the circle 𝒮 at the given pair of points
is an annulus (Möbius band) (see Fig. 5). Actually, the Fleitas graph is a circle 𝒮 with
intersection points equipped with assigned labels and spins, in which the intersection points
are vertices, and the arcs of the circle 𝒮 connecting these vertices are edges.
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Figure 5: Polar flow 𝑓 𝑡 and its Flutas graph Γ𝐹
𝑓 𝑡

Theorem 5 ([21]*, Theorem 5; [28]*, Theorem 3.4) Let 𝑓 𝑡 and 𝑓 ′𝑡 be polar flows on a
surface 𝑆 of genus 𝑔, and Γ𝐹

𝑓 𝑡, Γ𝐹
𝑓 ′𝑡 are their 𝑛-vertex Fleitas graphs. Then the isomorphism

of the graphs Γ𝐹
𝑓 𝑡 and Γ𝐹

𝑓 ′𝑡 is checked in time 𝑂(𝑛𝑂(𝑔)), if 𝑔 > 0, and in time 𝑂(𝑛), if 𝑔 = 0.

The last considered invariant is intended again for arbitrary gradient-like flows on sur-
faces. Denote by 𝐽𝑓 𝑡 the set of all cells of the flow 𝑓 𝑡. We choose one trajectory 𝜃𝐽 (𝑡-curve)
in each cell 𝐽 ∈ 𝐽𝑓 𝑡 . Let 𝒯 =

⋃︀
𝐽⊂𝑆

𝜃𝐽 , 𝑆 = 𝑆∖𝒯 . We call by 𝑢-curves unstable saddle sepa-

ratrices and by 𝑠-curves stable saddle separatrices. It follows from [39] that each connected
component Δ of 𝑆 is a curvilinear triangle bounded by one 𝑠-, one 𝑢- and one 𝑡-curve, so
we will call Δ by a triangular region. Denote by Δ𝑓 𝑡 the set of all triangular regions of the
flow 𝑓 𝑡.

The three-color graph Γ𝑂𝑆
𝑓 𝑡 by Oshemkov-Sharko from [37] corresponding to the gradient-

like flow 𝑓 𝑡 is constructed as follows (see Fig. 6):
1) the vertices of the graph Γ𝑂𝑆

𝑓 𝑡 one-to-one correspond to triangular regions;
2) two vertices of the graph are incident to an edge of color 𝑠, 𝑡, 𝑢, if the polygonal

regions corresponding to these vertices have a common 𝑠-, 𝑡-, or 𝑢-side, and a one-to-one
correspondence is established between this edge and an 𝑠, 𝑡, or 𝑢-curve, respectively.

Theorem 6 ([21]*, Theorem 4; [28]*, Theorem 3.5) Let 𝑓 𝑡, 𝑓 ′𝑡 be gradient-like flows
defined on surfaces of genus 𝑔, and Γ𝑂𝑆

𝑓 𝑡 , Γ𝑂𝑆
𝑓 ′𝑡 – their 𝑛-vertex three-color graphs. Then the

graph isomorphism Γ𝑂𝑆
𝑓 𝑡 and Γ𝑂𝑆

𝑓 ′𝑡 are checked in 𝑂
(︀
𝑛𝑂(𝑔)

)︀
for 𝑔 > 0 and in time 𝑂(𝑛) for

𝑔 = 0.

In Chapter 3 a finiteness criterion for the number of moduli of Morse-Smale flows
on surfaces was established and a classification of such flows in the sense of topological

9
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Figure 6: Phase portrait of some gradient-like flow and its three-color graph

conjugacy was obtained.

Theorem 7 ([25]*, Lemma 1; [24]*, Theorem 5.1) If a Morse-Smale flow has an un-
stable limit cycle in which an unstable manifold intersects with a stable manifold of some
stable limit cycle, then the flow has a functional modulus of topological conjugacy that gen-
erates an infinite number of numerical moduli of topological conjugacy.

Consider a Morse-Smale flow 𝜑𝑡 given on a closed surface 𝑆.
Let Ω𝑖 be the periodic orbit of 𝜑𝑡, 𝐾𝑖 = 𝑊 𝑢

Ω𝑖
for the repelling cycle Ω𝑖 and 𝐾𝑖 = 𝑊 𝑠

Ω𝑖

for the attracting cycle Ω𝑖, respectively.

Lemma 3.2 ([24]*, Lemma 4.1) There is a unique 𝜑𝑡-invariant one-dimensional foliation
Ξ𝑖 on 𝐾𝑖 whose fibers 𝜉𝑖 are secant for the trajectories of the flow 𝜑𝑡|𝐾𝑖

, and

𝜑𝑇𝑖(𝑧) ∈ 𝜉𝑖, 𝜑
𝑡(𝑧) /∈ 𝜉𝑖 𝑖𝑓 0 < 𝑡 < 𝑇𝑖, if 𝑧 ∈ 𝜉𝑖.

Such a foliation, uniqueness of which is indicated by Lemma 3.1, arises from Lyapunov’s
work [33] and was used in the proof of Andronov-Vitt Theorem on the Lyapunov stability of
a periodic trajectory [1], however, in the mentioned papers for such a foliation smoothness
is required.

Further, the class of Morse-Smale flows on surfaces with a finite number of topological
conjugacy moduli is distinguished.

Theorem 8 ([25]*, Theorem 1) A Morse-Smale flow 𝜑𝑡 on a surface 𝑆 has a finite num-
ber of moduli if and only if 𝜑𝑡 does not have an unstable limit cycle whose unstable manifold
intersects the stable manifold of some stable limit cycle.

10



Further, it is established that each topological conjugacy class of a Morse-Smale flow
𝜑𝑡 with a finite number of moduli corresponds one-to-one with an isomorphism class of
some graph. To construct such a graph, a neighborhood around each limit cycle is chosen
with boundary connected components that are transversal to trajectories. These boundary
components divide the surface into elementary regions. Each elementary region corresponds
to a vertex of the graph, and the boundary components correspond to edges directed in
accordance with the direction of the trajectories intersecting the boundary component.

All graph vertices are divided into 3 types:
– 𝒜-vertex corresponding to an elementary region containing only a single node point;
– ℒ-vertex corresponding to the elementary region, containing only a single limit cycle

from the non-negative set;
– ℳ-vertex containing at least one saddle point.
Such a graph – let us denote it by ϒ𝜑𝑡 – needs additional information to be a topological

invariant. Therefore ℳ-vertex of graph ϒ𝜑𝑡 is equipped with a three-color graph. Exactly,
consider some ℳ-region which is either a 2-manifold with boundary or a closed surface. In
the first case, we glue the union 𝐷 of unconnected 2-disks to the boundary to get a closed
surface 𝑀 , in the second case we also call the already existing surface 𝑀 and put 𝐷 = ∅.
Let us continue the flow 𝜑𝑡|ℳ to a gradient-like flow 𝑓 𝑡 : 𝑀 → 𝑀 such that 𝑓 𝑡 matches 𝜑𝑡

outside 𝐷, and Ω𝑓 𝑡 has exactly one fixed point (sink or source) in each connected component
of set 𝐷. Assume

Γℳ = Γ𝑂𝑆
𝑓 𝑡 .

Due to the embedding of the three-color graph Γℳ into the surface 𝑀 , we can induce
oriented boundaries of the region ℳ to the graph cycle Γℳ corresponding to the node
point lying on the disk, which replaced the ℒ-region. Such oriented cycles 𝜏ℳ,ℒ and 𝜏ℒ,ℳ

we equip the edges of ℳℒ and ℒℳ of the graph ϒ𝜑𝑡 respectively.
We denote the obtained equipped graph by ϒ*

𝜑𝑡 . According to [37], the graph ϒ*
𝜑𝑡 is a

complete Morse-Smale flow topological invariant with finite number of moduli with exact
topological equivalence (see figure 7).

Figure 7: Morse-Smale flow phase portrait and its equipped graph
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Now equip each ℒ-vertex of the graph with the period of the corresponding limit cycle.
We denote such an equipped graph by ϒ**

𝜑𝑡 .

Theorem 9 ([25]*, Theorem 2) Morse-Smale flows 𝜑𝑡, 𝜑′𝑡 without intersections of in-
variant manifolds of different limit cycles are topologically conjugate if and only if their
equipped graphs ϒ**

𝜑𝑡 and ϒ**
𝜑′𝑡 are isomorphic.

In Chapter 4 a classification of Ω-stable flows on surfaces is obtained up to topological
equivalence. The realization of invariants by standard flows on surfaces was performed and
efficient algorithms to distinguish isomorphisms were obtained. It was found that flows
with arbitrarily long chain of bundles, in contrast to diffeomorphisms, have a finite number
of moduli.

First, consider an Ω-stable flow 𝑓 𝑡 without limit cycles on a closed surface 𝑆. Such
a flow mutually unambiguously corresponds to the four-color graph Γ𝑓 𝑡 , generalizing the
three-color graph. Namely, the work proves that each component of the connectivity of the
complement of the surface up to the closure of the invariant manifolds of all saddle points
is a polygon region whose boundary, besides 𝑠−, 𝑡−, 𝑢− curves can also include any finite
number of 𝑐-curves which are connections. Let us orient the boundary of the polygonal
region according to the positive direction of the 𝑡-curve. Denote by Δ𝑓 𝑡 the set of polygon
regions of flow 𝑓 𝑡. Let us match the flow 𝑓 𝑡 with a four-color graph as follows (see Fig. 8):

1) the vertices of the graph Γ𝑓 𝑡 correspond unambiguously to polygonal regions of the
set Δ𝑓 𝑡 of the flow 𝑓 𝑡;

2) two vertices of a graph are incident to an edge of color 𝑠, 𝑡, 𝑢 or 𝑐, if the polygonal
regions corresponding to these vertices contain a common 𝑠-, 𝑡-, 𝑢- or 𝑐-curve in their
closures;

3) if there is more than one 𝑐-edge going from some vertex of the graph Γ𝑓 𝑡 , the 𝑐-edges
are considered ordered according to the passage of the corresponding separatrices in the
direction of the 𝑡-curve.

Theorem 10 ([20]*, Theorem 1; [22]*, Theorem 1.1; [26]*, Theorem 3.1) Ω-
stable flows 𝑓 𝑡 and 𝑓 ′𝑡 without limit cycles are topologically equivalent if and only if their
four-color graphs Γ𝑓 𝑡 and Γ𝑓 ′𝑡 are isomorphic.

The work also defines admissible abstract four-color Γ graphs and constructively proves
the following theorem.

Theorem 11 ([20]*, Theorem 3) For any admissible graph Γ there exists a Ω-stable flow
𝑓 𝑡 without limit cycles, given on a closed surface 𝑆, whose graph is isomorphic to Γ, besides

i) The Eulerian characteristic of the surface 𝑆 is calculated by the formula

𝜒(𝑆) = 𝜈0 − 𝜈1 + 𝜈2, (1)

12



Figure 8: Phase portrait of some Ω-stable flow without limit cycles and its four-color graph

where 𝜈0, 𝜈1 and 𝜈2 – the number of all 𝑡𝑢-, 𝑐- and 𝑠𝑡-cycles of the graph Γ respectively;
ii) The surface 𝑆 is unorientable if and only if the graph Γ contains at least one cycle

of odd length.

The paper also established an efficient algorithm for distinguishing Γ𝑓 𝑡 graphs.

Theorem 12 ([20]*, Theorem 2; [22]*, Theorem 1.2) Let 𝑓 𝑡, 𝑓 ′𝑡 be Ω-stable flows
without limit cycles on the surface 𝑆 of genus 𝑔, and Γ𝑓 𝑡, Γ𝑓 ′𝑡 be their 𝑛-vertexed and
𝑚-edged four-color graphs. Then the isomorphism of the graphs Γ𝑓 𝑡 and Γ𝑓 ′𝑡 is verified in
time 𝑂(𝑛𝑂(𝑔)) for 𝑔 > 0 and in time 𝑂(𝑛) if 𝑔 = 0. The orientability of the surface 𝑆 is
calculated in time 𝑂(𝑛+𝑚).

For an arbitrary Ω-stable flow 𝜑𝑡 on the surface 𝑆, the equipped graph ϒ*
𝜑𝑡 is constructed

similarly to the Morse-Smale flow graph using division into elementary regions with the
exception, that the ℳ-vertices are equipped with a four-color graph Γℳ, and a type 4
vertex is added, i.e. a ℰ-vertex corresponding to a region without fixed points and limiting
cycles. Such a vertex is equipped with weights +, − if the cycles in neighboring ℒ-regions
are oriented consistently, unconsistemtly, respectively (see Fig. 9). .

Theorem 13 ([23]*, Theorem 5.3; [26]*, Theorem 4.1) The Ω-stable flows 𝜑𝑡 and 𝜑′𝑡

are topologically equivalent iff their equipped graphs ϒ*
𝜑𝑡 and ϒ*

𝜑′𝑡 are isomorphic.

The set of admissible equipped graphs is also distinguished and the following theorem
is constructively proved.

Theorem 14 ([23]*, Theorem 5.9; [27]*, Theorem 1) Every admissible equipped
graph ϒ* corresponds to an Ω-stable flow 𝜑𝑡 : 𝑆 → 𝑆 on a closed surface 𝑆, besides:

(1) the Eulerian characteristic of the surface 𝑆 is calculated by the formula

𝜒(𝑆) =
∑︁
ℳ

(𝑋ℳ − 𝑌ℳ) +𝑁𝒜,
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Figure 9: Ω-stable flow 𝜑𝑡, its flow without limit cycles 𝑓 𝑡, graph ϒ*
𝜑𝑡 flow 𝜑𝑡

where 𝑋ℳ is the result of applying the formula (1) to the corresponding admissible four-
color graph Γℳ, 𝑌ℳ is the number of edges incident to ℳ and 𝑁𝒜 is the number of 𝒜-tops
of ϒ*;

(2) The surface 𝑆 is orientable if and only if every four-color graph equipping ϒ* has
no cycles of odd length, and every ℒ vertex has valence 2.

An efficient algorithm for distinguishing equipped graphs of Ω-stable streams is con-
structed.

Theorem 15 ([23]*, Theorem 5.10) Let 𝜑𝑡, 𝜑′𝑡 – Ω-stable flows on the surface 𝑆 of
genus 𝑔, and ϒ*

𝜑𝑡, ϒ*
𝜑′𝑡 – their 𝑛-verticed and 𝑚-edged equipped graphs. Then the isomor-

phism of graphs ϒ*
𝜑𝑡 and ϒ*

𝜑′𝑡 is verified in time 𝑂(𝑛𝑂(𝑔)) for 𝑔 > 0 and in time 𝑂(𝑛) if
𝑔 = 0. The orientability of the surface 𝑆 is computed in time 𝑂(𝑛 + 𝑚), the Eulerian
characteristic can be computed in time 𝑂(𝑚2).

Another result of the chapter concerns the proof of finiteness of moduli of topological
conjugacy of Ω-stable flows with connections of arbitrary length. For this purpose we
consider a class of flows 𝑓 𝑡 : 𝑆𝑔 → 𝑆𝑔 of smoothness class 𝐶2 generated by a gradient vector
field of height function of vertical orientable surface 𝑆𝑔 of genus 𝑔 > 0. The disjoint set of
such systems consists of a finite number of hyperbolic fixed points: one source, one sink,
and 2𝑔 saddle points forming a chain of connections of length 2𝑔 − 1 (see Fig. 10).

The moduli of such systems are the relations of eigenvalues of each pair of saddle points
connected by bundles corresponding to invariant manifolds which do not participate in the
connection of the given saddle points discovered by J. Palis [38]. The result of this section
is the fact that no other moduli of such systems arise.

Theorem 16 ([29]*, Theorem 1.1) The flow 𝑓 𝑡 : 𝑆𝑔 → 𝑆𝑔 has exactly 2𝑔 − 1 moduli.
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Figure 10: Examples of flows with chains of connections

2 Articles based on the research results

The results are presented in eight articles.

1. Kruglov V. E., Pochinka O. V. Classification with accuracy to topological conjugacy
of Morse – Smale flows with finite number of moduli of stability on surfaces // News
of higher educational institutions. Applied Nonlinear Dynamics. 2021. V. 29. No. 6.
P. 835-850.

2. Kruglov V., Pochinka O. Criterion for the Topological Conjugacy of Multi-
Dimensional Gradient-Like Flows with No Heteroclinic Intersections on a Sphere /
Пер. с рус. // Journal of Mathematical Sciences. 2020. Vol. 250. P. 22-30.

3. Kruglov V., Malyshev D., Pochinka O., Shubin D. On Topological Classification of
Gradient-like Flows on an n-sphere in the Sense of Topological Conjugacy // Regular
and Chaotic Dynamics. 2020. Vol. 25. No. 6. P. 716-728.

4. V. Kruglov, O. Pochinka, G. Talanova. On functional moduli of surface flows //
Proceedings of the International Geometry Center. 2020. Vol. 13. No. 1. P. 49-60.

5. Kruglov V., Malyshev D., Pochinka O. On Algorithms that Effectively Distinguish
Gradient-Like Dynamics on Surfaces // Arnold Mathematical Journal. 2018. Vol. 4.
No. 3-4. P. 483-504.

6. Vladislav Kruglov, Dmitry Malyshev, Olga Pochinka. Topological Classification of
Ω-stable Flows on Surfaces by Means of Effectively Distinguishable Multigraphs //
Discrete and Continuous Dynamical Systems. 2018. Vol. 38. No. 9. P. 4305-4327.
doi

7. Kruglov V. E., Malyshev D. S., Pochinka O. V. Multicolour graph as a complete
topological invariant for Ω-stable flows without periodic trajectories on surfaces //
Sbornik: Mathematics. 2018. V. 209. No. 1. P. 100-126.
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8. Kruglov V. E. On number of moduli for gradient surface height function flows //
Zhurnal SVMO. 2018. V. 20. No. 4. P. 419-428.

3 Conclusion

In this dissertation three classes of surface flows with regular dynamics are considered:
gradient-like flows, Morse-Smale flows and Ω-stable flows. The above classes were inves-
tigated in terms of the presence and number of moduli of topological conjugacy, and full
equivalence invariants were found for them, and in the case of finiteness of the number of
moduli, topological conjugacy invariants as well. For all classes the existence of a complete
invariant which is an equipped graph is proved, the class of admissible equipped graphs
with their subsequent realization by an appropriate thread is distinguished, and efficient
algorithms for distinguishing isomorphism of equipped graphs are constructed.

Let us list the main results of the work.

• It is proved that gradient-like flows on surfaces are topologically conjugate if and only
if they are topologically equivalent (Theorem 1).

• Effective algorithms for recognizing isomorphism of the following invariants of
gradient-like flows on surfaces are constructed:

- Peixoto graph (Theorem 2);

- modified Peixoto graph (Theorem 3);

- Wong graph (Theorem 4);

- Fleitas graph (Theorem 5);

- Oshemkov-Sharko tricolour graph (Theorem 6).

• There are found necessary and sufficient conditions that the Morse-Smale flow on the
surface has a finite number of moduli of topological conjugacy (Theorem 8) and also a
functional modulus is found for the Morse-Smale flow, which has stable and unstable
limit cycles whose invariant manifolds intersect (Theorem 7).

• For Morse-Smale flows with a finite number of moduli a complete topological conju-
gacy invariant which is an equipped graph (Theorem 9) is constructed.

• For Ω-stable flows without limit cycles a complete topological equivalence invariant
which is a four-color graph (Theorem 10) is constructed. The class of admissible
equipped graphs, for each of which a flow in the class under consideration is con-
structed (Theorem 11), and an effective algorithm to distinguish isomorphism of such
graphs (Theorem 12) is also constructed.
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• For Ω-stable flows in the general case a complete invariant of topological equivalence
which is an equipped graph (Theorem 13) is constructed. The class of admissible
equipped graphs, for each of which a flow in the class under consideration is con-
structed (Theorem 14), and an effective algorithm to distinguish isomorphism of such
graphs (Theorem 15) is also constructed.

• It was found that flows with arbitrarily long chain of connection, in contrast to dif-
feomorphisms, have a finite number of moduli of topological conjugacy (Theorem
16).
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